
Compact and Efficient Encryption/Decryption Module for
FPGA Implementation of the AES Rijndael

Very Well Suited for Small Embedded Applications

Gaël Rouvroy, François-Xavier Standaert,
Jean-Jacques Quisquater and Jean-Didier Legat

UCL Crypto Group
Laboratoire de Microélectronique
Université catholique de Louvain

Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium
rouvroy,standaert,quisquater,legat@dice.ucl.ac.be

Abstract

Hardware implementations of the Advanced En-
cryption Standard (AES) Rijndael algorithm have re-
cently been the object of an intensive evaluation. Sev-
eral papers describe efficient architectures for ASICs1

and FPGAs2. In this context, the highest effort was de-
voted to high throughput (up to 20 Gbps) encryption-
only designs, fewer works studied low area encryption-
only architectures and only a few papers have in-
vestigated low area encryption/decryption structures.
However, in practice, only a few applications need
throughput up to 20 Gbps while flexible and low cost
encryption/decryption solutions are needed to protect
sensible data, especially for embedded hardware ap-
plications. This paper proposes an efficient solution
to combine Rijndael encryption and decryption in one
FPGA design, with a strong focus on low area con-
straints. The proposed design fits into the smallest Xil-
inx FPGAs3, deals with data streams of 208 Mbps,
uses 163 slices and 3 RAM blocks and improves by
68% the best-known similar designs in terms of ra-
tio Throughput/Area. We also propose implemen-
tations in other FPGA Families (Xilinx Virtex-II) and
comparisons with similar DES, triple-DES and AES
implementations.

Keywords: Cryptography, AES, DES, FPGA, com-
pact encryption/decryption implementation, embedded

1ASIC: Application Specific Integrated Circuit.
2FPGA: Field Programmable Gate Array.
3Xilinx Spartan-3 XC3S50.

systems.

1. Introduction

In October 2000, NIST (National Institute of Stan-
dards and Technology) selected Rijndael [4] as the new
Advanced Encryption Standard (AES), in order to re-
place the old Data Encryption Standard (DES). The
selection process included performance evaluation on
both software and hardware platforms and many hard-
ware architectures were proposed. However, most of
these architectures simply transcript the algorithm into
hardware designs, without relevant optimizations and
tradeoffs. Moreover, the throughput and area con-
straints considered are often unrealistic as shown by
the recently published results.

First, many very high-speed (≥ 10 Gbps) cipher
hardware implementations have been published in the
literature. These designs consists of FPGA imple-
mentations of a complete unrolled and pipelined ci-
pher. The best such DES implementation is an encryp-
tor/decryptor based on a new mathematical descrip-
tion. It can achieve data rates of 21.3 Gbps in Virtex-II
FPGAs [15]. The encryption/decryption mode can be
changed on a cycle-by-cycle basis with no dead cy-
cles. For the AES, the best similar RAM-based solu-
tion unrolls the 10 cipher rounds and pipelines them
in an encryption-only process. This implementation in
a Virtex-E FPGA produces a throughput of 11.8 Gbps
[17, 18] and allows the key to be changed at every cy-
cle. This DES implementation reaches higher through-
put than the corresponding AES implementation.

1

However, these speed efficient designs are not al-
ways relevant solutions. Many applications require
smaller throughput (wireless communication, digital
cinema, pay TV, ...). Sequential designs based on a 1-
round loop may be judicious and attractive in terms of
hardware cost for many embedded applications. Sev-
eral such implementations have been published in the
literature. For DES and triple-DES designs, the most
efficient solution [16] encrypts/decrypts in 18 cycles
with a fresh key. For AES, the best design based on
1-round loop [17, 18] produces a data rate of 1450
Mbps (Virtex-E) using 542 slices and 10 RAM blocks,
but it does not support the decryption mode. Another
efficient circuit [20] proposes a compact architecture
that combines encryption and decryption. It executes
1 round in four cycles and produces a throughput of
166 Mbps (Spartan-II) using 222 slices and 3 RAM
blocks.

The design proposed in this paper is also based on
a quarter of round loop implementation and improves
by 68% (in term of ratio Throughput/Area) the de-
sign detailed in [20]. We investigate a good combina-
tion of encryption/decryption and place a strong focus
on a very low area constraints. The resulting design
fits in the smallest Xilinx devices (e.g. the Spartan-
3 XC3S50 and Virtex-II XC2V40), achieves a data
stream of 208 Mbps (using 163 slices, 3 RAM blocks)
and 358 Mbps (using 146 slices, 3 RAM blocks), re-
spectively in Spartan-3 and Virtex-II devices. It at-
tempts to create a bridge between throughput and cost
requirements for embedded applications.

The paper is organized as follows: section 2 de-
scribes the smallest Spartan-3 and Virtex-II devices;
the mathematical description of Rijndael is in sec-
tion 3; section 4 describes our sequential AES encryp-
tor/decryptor; finally, section 5 concludes this paper.

2. Spartan-3 and CLB description: the
XC3S50 component

The Spartan-3 configurable logic blocks (CLBs) are
organized in an array and are used to build combinato-
rial and synchronous logic designs. Each CLB element
is tied to a switch matrix to access the general rout-
ing matrix, as shown in Figure 1. A CLB element in-
cludes 4 similar slices, with fast local feedback within
the CLB. The four slices are split into two columns of
two slices with two independent carry logic chains and
one common shift chain.

Each slice includes two 4-input function genera-
tors, carry logic, arithmetic logic gates, multiplexers
and two storage elements. As shown in Figure 2,
each 4-input function generator is programmable as

a 4-input LUT, 16 bits of distributed SelectRAM
memory, or a 16-bit variable-tap shift register element.
The output from the function generator in each slice
drives both the slice output and the D input of the
storage element.

Figure 1. The Spartan-3 CLB.

Figure 2. The Spartan-3 slice.

A specific feature of the slice is the 16-bit shift reg-
ister configuration. The write operation is synchronous
with a clock input and an optional clock enable. A dy-
namic read access is performed through the 4-bit ad-
dress bus.

Spartan-3 devices also incorporate 18-Kbit RAM
blocks. These ones complement the distributed Selec-
tRAM resources provided by the CLBs. Each RAM
block is an 18-Kbit true dual-port RAM with two inde-
pendently clocked and independently controlled syn-
chronous ports that access a common storage area.
Both ports are functionally identical.

Virtex-II devices exploit the same architecture as
Spartan-3.

The XC3S50 and XC2V40 components are, respec-
tively, the smallest Spartan-3 and Virtex-II compo-

2

nents. Table 1 illustrates the logic resources available
in both components.

Component XC3S50 XC2V40
CLB array: row × col. 16 × 12 8 × 8

Number of slices 768 256

Number of flip-flops 1, 536 512

Number of LUTs 1, 536 512

Max dist. selectRAM
or shift reg. (bits) 24, 576 8, 192

Number of RAM blocks 4 4

Table 1. Resources available in XC3S50
and XC2V40.

3. The AES algorithm

The Advanced Encryption Standard (AES, Rijn-
dael) algorithm is a symmetric block cipher that pro-
cesses data block of 128, 192 and 256 bits using, re-
spectively, keys of the same length. In this paper,
only the 128 bit encryption version (AES-128) is con-
sidered. The 128-bit data block and key are consid-
ered as a byte array, respectively called State and
RoundKey, with four rows and four columns.

Let a 128-bit data block in the ith round be defined
as:

data blocki = di

15|d
i

14|d
i

13|d
i

12|d
i

11|d
i

10|d
i

9|

di

8|d
i

7|d6|d
i

5|d
i

4|d
i

3|d
i

2|d
i

1|d
i

0

where di
15 represents the most significant byte of the

data block of the round i. The corresponding Statei

is:

Statei =







di

15 di

11 di

7 di

3

di

14 di

10 di

6 di

2

di

13 di

9 di

5 di

1

di

12 di

8 di

4 di

0







AES-128 consists of ten rounds. One AES encryp-
tion round includes four transformations: SubByte,
ShiftRow, MixColumn and AddRoundKey. The
first and last rounds differ from the other ones. Indeed
there is an additional AddRoundKey transformation
at the beginning of the first round and no MixColumn
transformation is performed in the last round. This is
done to facilitate the decryption process.

SubByte (SB) is a non-linear byte substitution. It
operates with every byte of the State separately. The
substitution box (S-box) is invertible and consists of
two transformations:

1. Multiplicative inverse in GF (28). The zero ele-
ment is mapped to itself.

2. An affine transform over GF (2).

The SubByte transformation applied to the State can
be represented as follows:

SB(Statei) =






SB(di

15) SB(di

11) SB(di

7) SB(di

3)
SB(di

14) SB(di

10) SB(di

6) SB(di

2)
SB(di

13) SB(di

9) SB(di

5) SB(di

1)
SB(di

12) SB(di

8) SB(di

4) SB(di

0)







The inverse transformation is defined InvSubByte
(ISB).

ShiftRow (SR) performs a cyclical left shift on
the last three rows of the State. The second row is
shifted of one byte, the third row is shifted of two bytes
and the fourth row is shifted of three bytes. Thus, the
ShiftRow transformation proceeds as follows:

SR(SB(Statei)) =






SB(di

15) SB(di

11) SB(di

7) SB(di

3)
SB(di

10) SB(di

6) SB(di

2) SB(di

14)
SB(di

5) SB(di

1) SB(di

13) SB(di

9)
SB(di

0) SB(di

12) SB(di

8) SB(di

4)







The inverse ShiftRow operation (InvShiftRow
(ISR)) is trivial.

MixColumn (MC) operates separately on every
column of the State. A column is considered as a
polynomial over GF (28) and multiplied modulo x4+1
with the fixed polynomial c(x):

c(x) =′ 03′x3 +′ 01′x2 +′ 01′x +′ 02′

As an illustration, the multiplication by ′02′ corre-
sponds to a multiplication by two, modulo the irre-
ductible polynomial m(x) = x8 + x4 + x3 + x + 1.

This can be represented as a matrix multiplication:

Ri = MC(SR(SB(Statei))) =






′02′ ′03′ ′01′ ′01′

′01′ ′02′ ′03′ ′01′

′01′ ′01′ ′02′ ′03′

′03′ ′01′ ′01′ ′02′






⊗







SB(di

15) SB(di

11) SB(di

7) SB(di

3)
SB(di

10) SB(di

6) SB(di

2) SB(di

14)
SB(di

5) SB(di

1) SB(di

13) SB(di

9)
SB(di

0) SB(di

12) SB(di

8) SB(di

4)







To achieve the inverse operation (InvMixColumn
(IMC)), every column is transformed by multiplying
it with a specific multiplication polynomial d(x), de-
fined by

c(x) ⊗ d(x) =′ 01′

d(x) =′ 0B′x3 +′ 0D′x2 +′ 09′x +′ 0E′

AddRoundKey (AK) performs an addition (bit-
wise XOR) of the Statei with the RoundKeyi:

3

AK(Ri) =







Ri

15 Ri

11 Ri

7 Ri

3

Ri

14 Ri

10 Ri

6 Ri

2

Ri

13 Ri

9 Ri

5 Ri

1

Ri

12 Ri

8 Ri

4 Ri

0






⊕







rki

15 rki

11 rki

7 rki

3

rki

14 rki

10 rki

6 rki

2

rki

13 rki

9 rki

5 rki

1

rki

12 rki

8 rki

4 rki

0







The inverse operation (InvAddRoundKey
(IAK)) is trivial.

RoundKeys are calculated with the key schedule
for every AddRoundKey transformation. In AES-
128, the original cipher key is the first RoundKey0

(rk0) used in the additional AddRoundKey at the
beginning of the first round. RoundKeyi, where
0 < i ≤ 10, is calculated from the previous
RoundKeyi−1. Let p(j) (0 ≤ j ≤ 3) be the column
j of the RoundKeyi−1 and let w(j) be the column
j of the RoundKeyi. Then the new RoundKeyi is
calculated as follows:

w(0) = p(0) ⊕ (Rot(Sub(p(3))) ⊕ rconi,

w(1) = p(1) ⊕ w(0)

w(2) = p(2) ⊕ w(1)

w(3) = p(3) ⊕ w(2)

Rot is a function that takes a four byte input
[a0; a1; a2; a3] and rotates them as [a1; a2; a3; a0].
The function Sub applies the substitution box (S-box)
to four bytes. The round constant rconi contains val-
ues [(′02′)i−1;′ 00′;′ 00′;′ 00′].

4. Our sequential AES implementations

Some designs propose an implementation based on
one complete round, and iteratively loop data through
this round until the entire encryption or decryption is
achieved. Only one Statei is processed in one cy-
cle. These designs are suited for feedback and non-
feedback modes of operation.

As mentioned in [20], the AES round offers various
opportunities of parallelism. The round is composed of
16 S-boxes and four 32-bit MixColumn operations,
working on independent data. Only ShiftRow needs
to deal with the entire 128-bit State.

Based on this observation, we propose an imple-
mentation using four S-boxes and one MixColumn
in order to compact the design. This decreases the area
by a factor of four but increases the time of one round
to four cycles. In practice, only the time-space tradeoff
is modified. A similar approach was proposed in [20].

4.1. Implementation of ShiftRow and
InvShiftRow operations

In our design, the way to access the Statei,
for the first quarter of the round, is described
in Figure 3. We read di

15,di
10,di

5,di
0 in paral-

lel from the input memory, and execute SubByte,
MixColumn and AddRoundKey. Then we write re-
sults di+1

15 ,di+1
14 ,di+1

13 , di+1
12 to a different output mem-

ory. The second, third, and fourth quarters of the
round are managed in a similar manner, depending on
ShiftRow.

The best FPGA solution to implement such si-
multaneous read and write memory accesses is pro-
posed in [20]. The solution is based on a shift reg-
ister design. As described above, all calculations
from the AddRoundKey are written into adjacent lo-
cations of the output memory in consecutive cycles.
We store first di+1

15 ,di+1
14 ,di+1

13 , di+1
12 in parallel, then

di+1
11 ,di+1

10 ,di+1
9 , di+1

8 in parallel, and so on. Therefore
we can store the consecutive round results into shift
registers (one shift register per row of the State, four
shift registers for four rows). Xilinx FPGAs propose
a very space efficient solution to achieve a 16-bit shift
register with a dynamic variable access. Four slices
can implement an 8-bit wide, 16-bit long shift register.
The four dynamic variable accesses are used to read
the input memory content at correct positions into the
rows. Four 8-bit wide shift register are needed, which
corresponds to 16 slices.







d
i

15 di

11 di

7 di

3

di

14 d
i

10 di

6 di

2

di

13 di

9 d
i

5 di

1

di

12 di

8 di

4 d
i

0







⇓

SB + MC + AK
⇓









d
i+1

15
di+1
11 di+1

7 di+1
3

d
i+1

14
di+1
10 di+1

6 di+1
2

d
i+1

13
di+1
9 di+1

5 di+1
1

d
i+1

12
di+1
8 di+1

4 di+1
0









Figure 3. Memory accesses involved in
the first calculation step of the round i.

The InvShiftRow operation can be done using the
same shift registers modifying the way to access the
input memory.

4

4.2. Implementation of SubByte/MixColumn
and InvSubbyte/InvMixColumn

Compared to the paper [20], we propose a more
efficient combination of SubByte and MixColumn
operations, i.e. we use less resources than separated
block implementations. Our solution takes advantage
of specific features of the new Xilinx devices and per-
fectly fits into the Spartan-3 or Virtex-II technologies4.

The Spartan-3 and Virtex-II FPGAs have both dedi-
cated 18-Kbit dual-port RAM blocks5, that can be used
to store tables for the combination of SubByte and
MixColumn.

As also mentioned in [4], the consecutive SubByte
and MixColumn operations on the first quarter of the
round can be expressed as ei

15..12:







ei

15

ei

14

ei

13

ei

12






=







′02′ ′03′ ′01′ ′01′

′01′ ′02′ ′03′ ′01′

′01′ ′01′ ′02′ ′03′

′03′ ′01′ ′01′ ′02′






⊗







SB(di

15)
SB(di

10)
SB(di

5)
SB(di

0)







which is also equivalent to:







′02′

′01′

′01′

′03′






⊗

[

SB(di
15)

]

⊕







′03′

′02′

′01′

′01′






⊗

[

SB(di
10)

]

⊕







′01′

′03′

′02′

′01′






⊗

[

SB(di
5)

]

⊕







′01′

′01′

′03′

′02′






⊗

[

SB(di
0)

]

If we define four tables (T0 to T3) with 256 4-byte data
as:

T0(a) =







′02′
• SB(a)

SB(a)
SB(a)

′03′
• SB(a)







T1(a) =









′03′ • SB(a)
′02′ • SB(a)

SB(a)
SB(a)









T2(a) =









SB(a)
′03′ • SB(a)
′02′ • SB(a)

SB(a)









4It is not the case with Spartan-II.
5The Spartan-II has dedicated 4-Kbit dual-port RAM blocks.

T3(a) =









SB(a)
SB(a)

′03′ • SB(a)
′02′ • SB(a)









The combination of SubByte followed by
MixColumn can be expressed as:






ei

15

ei

14

ei

13

ei

12






= T0(d

i
15) ⊕ T0(d

i
10) ⊕ T0(d

i
5) ⊕ T0(d

i
0)

The size of one Ti table is 8 Kbits for encryption.
The corresponding similar table for decryption also
takes 8 Kbits (IT0 to IT3). It is therefore possible
to achieve the complete SubByte/MixColumn and
InvSubByte/InvMicolumn operations using two
dual-port 18-Kbit RAM blocks.

The proposed solution significantly reduces the re-
sources used in [20].

4.3. Encryption/Decryption design choices

One of the inconveniences of AES comes from
the fact that the AddRoundKey is executed after
MixColumn in the case of encryption and before
InvMixColumn in the case of decryption. Such en-
cryption/decryption implementation will therefore re-
quire additional switching logic to select appropriate
data paths, which can also affects the time perfor-
mance. The paper [20] mentions this problem but
chooses to design like that anyway.

AES decryption algorithm nevertheless allows
InvMixColumn and AddRoundKey to be re-
ordered if we perform an additional InvMixColumn
operation on most of the RoundKeys (except the first
and the last RoundKeys). More details about such
scheduling of operations can be found in [4, 5]. At
first sight, InvMixColumn could seem to require
much more area than the switching logic. This is es-
pecially true if the InvMixColumn of the round is
narrowly combined with the InvSubByte in RAM
blocks. Nevertheless, the subsection 4.4 proposes
a solution using very few additional resources but
some extra cycles to generate all inverse Roundkeys
(InvRoundKeys). Figure 4 summarizes our design
choices concerning the data path round.

5

4 X 8

SRL16

15

0

4 X 4

.......

.......

4 X 8

Rd_ROW1

Rd_ROW2

Rd_ROW3

Rd_ROW4

2 RAM blocks

T
0
...T
3

or

IT
0
...IT
3

RoundKey
i

PLAINTEXT_IN

Reset_IN

MODE_DECR

32

32

32

32

CIPHER

ENABLE_OUT

Figure 4. Our AES data path round.

4.4. Implementation of the key schedule

The implementation of our AES key sched-
ule is based on precomputing RoundKeys and
InvRoundKey in advance and storing them in
one RAM block. The difficult computation of the
InvRoundkeys on-the-fly6 completely justifies this
approach.

Our implementation of the key schedule is shown
in Figure 5. First, it computes 32-bits of all the
RoundKeyi per clock cycle. The results are stored
in one dual-port block RAM, thanks to the first port.
This step takes 44 clock cycles. In the same time, we
also store SB(RoundKeys) data in the same RAM,
but using the other port. It corresponds to the first
step of the calculation process of InvRoundKeys.
As mentioned in the subsection 4.3, InvRoundKeyi

equals to IMC(RoundKey10−i), except for the first
InvRoundKey0 and last InvRoundKey10, which
equal to respectively RoundKey10 and RoundKey0.

If we need decryption processes, a second step
has to be applied to SB(RoundKeys). There-
fore, we start to calculate ISB(SB(RoundKey10))
and store it as InvRoundKey0. Then, we eval-
uate the result IMC(ISB(SB(RoundKey10−i)))
which equals to IMC(RoundKey10−i) and we store
it as InvRoundKey1..9. InvRoundKey10 is gen-
erated as InvRoundKey0. This optional decryp-

6It is a real weak aspect of AES algorithm.

tion process takes 48 cycles to generate the complete
InvRoundKeys.

Due to InvRoundKey0 and InvRoundKey10, ta-
bles (T0 to T3) need to be changed. InvSubByte has
to replace the duplicated SubByte. We define new 16-
Kbit tables (CT0 to CT3) combined with (IT0 to IT3).
CT0 is illustrated below as an example:

CT0(a) =







′02′
• SB(a) ′0E′

• SB(a)
SB(a) ′09′

• SB(a)
ISB(a) ′0D′

• SB(a)
′03′

• SB(a) ′0B′
• SB(a)







32

2 RAM blocks

CT
0
...CT
3

MODE_DECR

32

32

F5

ISB+IMC

SB
ISB

KEY_IN

rcon
i

SRL3

RoundKey
i

SB(RoundKey
i
)

ISB(SB(RoundKey
i
))

IMC(ISB(SB(RoundKey
i
)))

DIA DIB

1 RAM block

RoundKeys or

InvRoundKeys

K_RAM
32

Reset_K_RAM

ADDRA

ADDRB

Rot

Figure 5. Our AES key schedule.

4.5. Implementation and results of our com-
plete AES

Our final AES design combines the data path part
and the key schedule part. Since the key schedule is
done with precomputation, this part does not work si-
multaneously with the encryption/decryption process.
It is therefore possible to share resources between both
circuits. Both parts of the circuit were thought to per-
fectly fuse together without additional slices7 and tri-
state buffers. This allows reaching higher frequency
than in [20]. The global design is shown in Figure 6.
We fused the key and plaintext inputs to one register.
The input and output registers are packed into IOBs to
improve the resources used and the global frequency
of the design.

7Only new F5 multiplexers are required.

6

Algo. Gaj’s Ours Ours Ours Ours
AES AES AES DES 3-DES

Device XC2S30-6 XC3S50-4 XC2V40-6 XC2V40-6 XC2V40-6
Slices 222 163 146 189 227

Through. (Mbps) 166 208 358 974 326
RAM blocks 3 3 3 0 0

Throughput/Area
(Mbps/slices) 0.75 1.26 2.45 5.15 1.44

Table 2. Comparisons with other sequential block cipher implementations.

32

2 RAM blocks

CT
0
...CT
3

K_RAM

F5

INPUTS

PLAINT/KEY

Reset_IN

MODE_DECR

32

32

32

32

F5

ISB+IMC

SB
ISB

SRL16

15

4 X 4

.......

.......

Rd_ROW1

Rd_ROW2

Rd_ROW3

Rd_ROW4

ROT

rcon
i

SRL3

32

32

DIA DIB

1 RAM block

RoundKey
i
 or

InvRoundKey
i

K_RAM
32

Reset_K_RAM

ADDRA

ADDRB

CIPHER

ENABLE_OUT

Figure 6. Our complete AES design.

The synthesis of our complete design was done us-
ing Synpllify Pro 7.2 from Synplicity. The place and
route were done using Xilinx ISE 6.1.02i package. The
final results are given in Table 3 for Spartan-3 and
Virtex-II.

As a comparison, we also set up a table with the
previous AES [20], DES and 3-DES [16] results. Ta-
ble 2 shows the results of these compact encryp-
tion/decryption circuits. Like others papers, we also
define a ratio Throughput/Area to facilitate compar-
isons. We finally achieve an implementation of AES
which is 68% better in terms of Throughput/Area
assuming that Spartan-II and Spartan-3 are equivalent.

In comparison with the most efficient compact 3-
DES circuits in XC2V40-6, we can conclude that AES
is more effective if we do not care about the use

Device XC3S50-4 XC2V40-6
LUTs used 293 288

Registers used 126 113
Slices used 163 146

RAM blocks 3 3
Latency (cycles) 46 46

Out. every (cycles) 1/44 1/44

Frequency 71.5 MHz 123 MHz

Table 3. Final results of our complete se-
quential AES.

of three internal RAM blocks. However, 3-DES re-
mains interesting for applications that need to regularly
change the key for encryption or decryption. Indeed,
our AES design takes 92 cycles, in the worst case, to
calculate a new complete InvRoundKeys.

5. Conclusion

In this paper, we propose solutions for a very com-
pact and effective FPGA implementation of the AES.
We combine narrowly the non-linear S-boxes and the
linear diffusion layer thanks to specific features of re-
cent Xilinx devices. We also propose a low-cost so-
lution to deal with the subkeys computed during the
decryption step. In addition, we merge efficiently the
key schedule and the data path parts.

The resulting implementations fits in a very inex-
pensive Xilinx Spartan-3 XC3S50 FPGA, for which
the cost starts below $10 per unit. This implementa-
tion can encrypt and decrypt a throughput up to 208
Mbps, using 163 slices. The design also fits in Xil-
inx Virtex-II XC2V40 and produces data streams up
to 358 Mbps, using 146 slices. In comparison with 3-
DES, AES is more efficient if we do not care about the
use of three internal FPGA RAM blocks.

The throughput, low-cost and flexibility of our solu-
tion make it perfectly practical for cryptographic em-

7

bedded applications.

References

[1] J.M. Rabaey. Digital Integrated Circuits. Prentice Hall, 1996.

[2] Xilinx. The Virtex-II field programmable gate arrays data sheet,available
from http://www.xilinx.com.

[3] National Bureau of Standards. FIPS PUB 46, The Data Encryption Stan-
dard. U.S. Departement of Commerce, Jan 1977.

[4] J. Daemen and V. Rijmen. The Block Cipher RIJNDAEL, NIST’s AES
home page, available from http://www.nist.gov/aes.

[5] P.Baretto, V.Rijmen, The KHAZAD Legacy-Level Block
Cipher, Submission to NESSIE project, available from
http://www.cosic.esat.kuleuven.ac.be/nessie/

[6] S. Trimberger, R. Pang and A. Singh. A 12 Gbps DES encryp-
tor/decryptor core in an FPGA. In Proc. of CHES’00, LNCS, pages
156–163. Springer, 2000.

[7] Xilinx, V. Pasham and S. Trimberger. High-Speed DES
and Triple DES Encryptor/Decryptor. available from
http://www.xilinx.com/xapp/xapp270.pdf, Aug
2001.

[8] Helion Technology. High Performance DES and Triple-DES Core for
XILINX FPGA. available from http://www.heliontech.com.

[9] CAST, Inc. Triple DES Encryption Core. available from
http://www.cast-inc.com.

[10] CAST, Inc. DES Encryption Core. available from
http://www.cast-inc.com.

[11] inSilicon. X 3 DES Triple DES Cryptoprocessor. available from
http://www.insilicon.com.

[12] inSilicon. X DES Cryptoprocessor. available from
http://www.insilicon.com.

[13] P. Chodowiec, K. Gaj, P. Bellows and B. Schott. Experimental Test-
ing of the Gigabit IPSec-Compliant Implementations of RIJNDAEL and
Triple DES Using SLAAC-1V FPGA Accelerator Board. In Proc. of
ISC 2001: Information Security Workshop, LNCS 2200, pp.220-234,
Springer-Verlag.

[14] J.P. Kaps and C. Paar. Fast DES Implementations for FPGAs and Its
Application to a Universal Key-Search Machine. In Proc. of SAC’98:
Selected Areas in Cryptography,LNCS 1556, pp. 234-247, Springer-
Verlag.

[15] G. Rouvroy, FX. Standaert, JJ. Quisquater, JD. Legat. Efficient Uses of
FPGA’s for Implementations of DES and its Experimental Linear Crypt-
analysis. In IEEE Transactions on Computers, Special CHES Edition,
pp. 473-482, April 2003.

[16] G. Rouvroy, FX. Standaert, JJ. Quisquater, JD. Legat. Design Strategies
and Modified Descriptions to Optimize Cipher FPGA Implementations:
Fast and Compact Results for DES and TripleDES. In the proceedings of
FPL 2003, Lecture Notes in Computer Science, vol 2778, pp. 181-193,
Springer-Verlag.

[17] FX. Standaert, G. Rouvoy, JJ. Quisquater, JD. Legat. A Methodology
to Implement Block Ciphers in Reconfigurable Hardware and its Appli-
cation to Fast and Compact AES Rijndael. In the proceedings of FPGA
2003, pp. 216-224, ACM.

[18] FX. Standaert, G. Rouvoy, JJ. Quisquater, JD. Legat. Efficient Im-
plementation of Rijndael Encryption in Reconfigurable Hardware: Im-
provements and Design Tradeoffs. In the proceedings of CHES 2003,
Lecture Notes in Computer Science, vol 2779, pp. 334-350, Springer-
Verlag.

[19] P. Chodowiec and K. Gaj. Comparison of the Hardware Performance
of the AES Candidates using Reconfigurable Hardware. The Third Ad-
vanced Encryption Standard (AES3) Candidate Conference, April 13-14
2000, New York, USA.

[20] K. Gaj and P. Chodowiec. Very Compact FPGA Implementation of the
AES Algorithm. In the proceedings of CHES 2003, Lecture Notes in
Computer Science, vol 2779, pp. 319-333, Springer-Verlag.

[21] V. Fischer and M. Drutarovsky. Two Methods of RIJNDAEL Implemen-
tation in Reconfigurable Hardware. In the proceedings of CHES 2001:
The Third International CHES Workshop, Lecture Notes In Computer
Science, LNCS2162, pp 65-76, Springer-Verlag.

[22] A. Rudra et al. Efficient RIJNDAEL Encryption Implementation with
Composite Field Arithmetic. In the proceedings of CHES 2001: The
Third International CHES Workshop, Lecture Notes In Computer Sci-
ence, LNCS2162, pp 65-76, Springer-Verlag.

[23] M. McLoone and J.V. McCanny, High Performance Single Ship FPGA
RIJNDAEL Algorithm Implementations. In the proceedings of CHES
2001: The Third International CHES Workshop, Lecture Notes In Com-
puter Science, LNCS2162, pp 65-76, Springer-Verlag.

[24] M. McLoone and J.V. McCanny, Single-Chip FPGA Implementation
of the Advanced Encryption Standard Algorithm. In the proceedings of
FPL 2002: The Field Programmable Logic Conference, Lecture Notes
in Computer Science, LNCS 2147, p.152ff.

[25] K.U. Jarvinen, M.T. Tommiska and J.O. Skytta A fully Pipelined Mem-
oryless 17.8 Gbps AES-128 Encryptor. In the proceedings of FPGA
2003: Symposium on Field-Programmable Gate Arrays, pp. 207-215,
ACM.

[26] N. Weaver and J. Wawrzynek. High Performance Com-
pact AES Implementations in Xilinx FPGAs. available from
http://www.cs.berkeley.edu/ nweaver/Rijndael..

8

